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Vapor presstires were evaluated from measured internal-energy changes in the 
vapor+ l iqu id  two-phase region, ] U  '-''. The method employed a thermo- 
dynamic relationship between the derivative quantity {~U'-"/?I" b and the 
vapor pressure {p.I and its temperature derivative I~p?T l , .  This method w a s  

applied at temperatures between the triple point and the normal boiling point 
of three substances: I , l . l ,2-tetralluoroethane (RI34al.  pentalluoroethane 
{R 125 ). and difluoromethane (R32 I. Agreement with experimentally measured 
vapor presstires near the normal boiling point (101.325kPa) was within the 
experimental uncertainty of approximately + 0.04 kPa I +_ 0.04 ~ I. The method 
was applied to R I34a to test the thermodynamic consistency of a published 
p p T equation of state with an equation for/)~ Ibr this substance. It was also 
applied to evaluate published p ,  data which are m disagreement by more than 
their claimed uncertainty. 

KEY WORDS: difluoromethane: internal energy: pentafluoroethane: refri- 
gerants: I , l . l .2-tetralluoroethane: triple point, two-phase region: vapor pressure. 

1. I N T R O D U C T I O N  

Ambrose and Davies [ 1 ] have reviewed developments in measurement and 
estimation of low-pressure vapor pressures below the atmospheric range of 
1 to 200kPa.  They have concluded that most of the methods for the 
measurement of low-pressure values are time-consuming and relatively 
inaccurate, and improved methods need to be developed. For these 
reasons, we seek to develop better estimation procedures which may 
extrapolate high-accuracy vapor pressures in the atmospheric range 
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( ~  100kPa). The most reliable data in this range have uncertainties 
approaching 1 part in 105 of the vapor pressure, p~. The accuracy of most 
experimental vapor pressures probably falls at lower pressures by about a 
power of 10 for every tenfold decrease in pressure. Thus, at 1 Pa, the 
possible uncertainty in a vapor pressure may be about 100%. The chief 
objective of this work is to develop a new method to calculate reliable 
vapor pressures at pressure conditions where conventional measurements 
are frequently suspect or, in many cases, nonexistent. We first show the 
relevant thermodynamic equations, then review published methods, then 
discuss the equations specific to the new method. In the latter half of this 
work we apply the new method to three substances. 

Procedures to extend vapor-pressure measurements to low tem- 
peratures have been based principally on thermodynamic equations for the 
vapor pressure. Thermodynamic equations for the vapor pressure always 
begin with the equality of the Gibbs energy of the coexisting phases 
G'(T,  p ) =  G"(T,  p),  which applies to vapor-solid, solid-liquid, or liquid- 
vapor equilibrium. For  small changes in the equilibrium temperature and 
coexistence pressure, the changes in the Gibbs energy due to the small ( d T  
and dp) changes must be equal, d G ' =  dG", Substituting the Gibbs-Duhem 
equation for the Gibbs energy, dG = V d p - S  dT, into this equality gives 
the expression, V' dp - S'  d T  = V" dp - S" dT. Since T and p are the same 
in both phases, we may rearrange this expression to obtain 

dvAl> V 
(1) 

Substituting the definition G =  H - T S  into the Gibbs equality we get, 
H'  - TS '  = H" - TS".  Rearranging gives S'  - S"  = (H '  - H"  )/T. We may 
substitute this last result into Eq. (1) to obtain the familiar Clapeyron 
equation 

. . . . )  
-~T <, \ 7~( -(s; - -  -I 7;' ) - T A v A P V (3) 

If we then substitute the definition of H = U +  p V, we obtain 

<,,-<,,, 
\ T ( V ' - V " ) )  _ A v A v U  . p ,  

T A V A I > V + ~  (4) 

or we may write, more compactly, 

T2(O(p/T)~ Av,,,>U 
\ - - - a - T - ) < ,  = ~ v A i ,  V 

(5) 
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Equations (1)-(4) illustrate how we can use data for entropy, enthalpy, or 
internal-energy changes to extract useful information on the temperature 
derivatives of the saturation pressure. When combined with measurements 
of vapor pressure in the atmospheric range and fitted to a vapor pressure 
equation, we may integrate Eqs. (1)-(4) to obtain accurate vapor pressures 
at pressures below the atmospheric range. 

Since precise experimental data for entropy, enthalpy, or internal 
energy for saturated liquid and vapor states are seldom available, other 
practical strategies have been proposed. Majer et al. 12] have extensively 
reviewed published work on enthalpies of vaporization. They discuss the 
methods for extracting vapor pressures which employ an integration of the 
Clapeyron equation and a knowledge of the vapor pressure at a single 
temperature, concluding that often there are insufficient experimental data 
available to obtain accurate vapor pressures. This point has been 
amplified by McLinden [3]. McLinden analyzed the direct integration of 
the Clapeyron equation for 2,2-dichloro-l,l,l-trifluoroethane (R123). 
McLinden used an accurate equation of state developed by Younglove 
and McLinden [41 to calculate all of the parameters in the Clapeyron 
equation, Eq. (2). To illustrate the effect of experimental uncertainties, 
McLinden applied a systematic +0.1% offset to the enthalpies of 
vaporization calculated with the equation of state, then calculated vapor 
pressures. Starting an integration of the Clapeyron equation at a reference 
state of (300 K, 97.8 kPa), he found that the calculated vapor pressure was 
1% too low at 250K, 10% too low at 215 K, and in the worst case, 
negative at 190 K. In practice, the experimental uncertainty of enthalpies of 
vaporization is often 5 to I0 times the systematic offset used by McLinden, 
implying that because of its sensitivity to experimental uncertainties, 
integration of experimental AvApH may be impractical over wide ranges of 
temperature. 

Recently, however, practical approaches which may circumvent these 
problems have been developed. Tillner-Roth l-5] has presented a method 
which employs a nonlinear regression analysis to extrapolate p~ from near 
the normal boiling point to the triple point, based on integration of the 
Clapeyron equation in terms of In p,  and T- t and a simple equation for 
AvApH. While no experimental AvApH data were used, selected vapor- 
pressure data were employed in this method. A one-term equation for the 
T dependence of AvApH was employed which may not always adequately 
describe the behavior of AvApH over a wide range of temperatures. In any 
case, it has been shown to be a reliable method for refrigerants between the 
triple point and 0.1-0.2 MPa. The vapor pressures calculated with Tillner- 
Roth's method are within a few pascals (or 0.1%, whichever is greater) of 
experimental measurements. 

840 I~ 1-12 
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Weber [6] has presented a method for extrapolating vapor-pressure 
data with saturated-liquid heat capacities by applying an iterative method 
with the equation, 

c "  Rr(.):")_ (.->) C ~ C ' , , =  ,.+ V,--T\-TT / T \ - T f I \ ~ )  - V " T \ d T e l "  (5) 

where C,, denotes the saturated-liquid heat capacity. This is a complex 
lnethod, and as with any such technique, there are possible hidden 
problenls. For example, there is a possibility of numerical instability of the 
right side of Eq. (5), whose (first and second) and (third and fourth) term 
pairs are of nearly equal magnitude but with opposite signs. Also, 
knowledge of a number of complex thermodynamic properties especially 
the first and second derivatives, is required to evaluate the terms in this 
function. An ideal-gas approximation for the vapor phase is given for the 
second term on the right side. Weber has pointed out that the full real-gas 
term must be used for calculations and that Eq. (5) is better for going from 
p~, to C,. Nevertheless, p ,  values estimated with this method have been 
successfully used to develop equations of state, for example, Refs. 4 and 7 
at low temperatures. 

Magee [8] has shown that useful information on the temperature 
derivatives of the vapor pressure may be obtained from isochoric 
measurements of internal-energy changes or heat capacities in the vapor + 
liquid coexistence region. The key measurements required are density and 
internal energy. In order to treat these two-phase data, the following rela- 
tions will be derived beginning with the definition of the Helmholtz free 
energy, A = U -  TS. Our starting point is a combination of the two expres- 
sions U= A + TS and S =  --(OA/aT),., fi'om which we obtain 

U= A - T(OA/OT),. (6) 

The internal energy in the two-phase region, U (2', is a function of T and 
V. This is a bulk thermophysical property, which is a mass average of the 
saturated liquid and saturated vapor (specific) properties at the same T 
and p. We may evaluate the derivative with respect to I7 while T is constant, 

(OUq2)/OV)T= (@A'e)/OV)T - T(O2A(Z)/OV OT) (7) 

Substituting the equality p. =--(8,A(Z)/@V)T into Eq. (7), we obtain the 
expression relating the two-phase internal energy to the vapor pressure, 

(ou"-'/~v).,.= \~l.- p~= \ c---~-). (8) 
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If we differentiate both sides of Eq. (8) with respect to 7', we obtain the 
tbllowing result in the two-phase region: 

r?leV  
lac"e'/ov)"= \dT'-J~ (9 

which could also be obtained by differentiation of an expression [their 
Eq. (3) ] derived by Yang and Yang [ 9 ]. 

Equations (8) and (9) suggest a simple procedure for evaluating vapor 
pressure fl'om calorimetric measurements at constant volume, such as 
reported by Magee [10] for 1,1,1,2-tetrafluoroethane (R134a). We can 
calculate discrete values of the first and second temperature derivatives of 
the vapor pressure for two-phase samples from internal energy mea- 
surements and the resulting heat capacity data for at least two bulk 
densities. These calculations will be done at temperatures which overlap 
existing vapor-pressure measurements near the normal boiling point and 
extend to much lower temperatures. Since the relationships of both internal 
energy to volume and heat capacity to volume must be exactly linear for 
two-phase states at constant temperature, only two two-phase isochores 
are needed for these calculations, though five or more isochores would be 
beneficial. The derivatives calculated with this procedure and selected 
measurements of vapor pressure could be fitted simultaneously to a vapor 
pressure equation. No assumptions have been made in the procedure. No 
additional corrections need be made to the raw experimental data. The 
recommended temperature range for this calculation and fitting procedure 
would be T-rl~.lPLl < T<O.8Tc, since the curvature of the internal energy 
and heat capacity becomes very strong at temperatures close to the critical 
point, raising the uncertainty of the estimates of these derivatives. We 
demonstrate below that the procedure yields vapor pressures with a low 
uncertainty. 

2. DETAILS OF T E C H N I Q U E  

2.1. Working Equations 

This section presents a technique tbr accurate evaluation of vapor 
pressures from isochoric internal-energy measurements in the two-phase 
region. For the alternative refrigerants of interest, no independent studies 
of C~,~ ~ measurements have been published. Since U ~2~ and C~,. 2' from the 
same study would reveal much the same information, Eq. (9) was not 
employed in this work. The method is based solely on Eq. (8). Figure 1 
illustrates the behavior of internal energy U ~2~ of a two-phase sample of 
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Fig. I. Linear dependence of two-phase internal energy on bulk specific 
volume at a temperature near the normal boiling point of R I34a: data from 
Rel: I1: the arbitrary reference condition is defined as U = 0 at the satt, rated 
vapor state at T=248  K. 

1,1,1,2-tetrafluoroethane (R134a) at a constant temperature of 248 K. This 
temperature is slightly higher than the normal boiling point [11] of 
246.78 K. The internal-energy function in Fig. 1 varies linearly from the 
saturated liquid U' to the saturated vapor U", to which we have assigned 
an arbitrary value of 0. At a bulk two-phase specific volume V ~:', the bulk 
internal energy is U c:~. Since U '-'~ is a linear function of V ~2j at any given 
temperature, (SU~27aV~2~) T is a unique value that can be determined easily 
with finite differences by any two (U ~2', V ~2~) pairs of values within the 
two-phase region. This derivative is evaluated with the expression, 

( U~ 2~ - Uql2'~ 
l au ' : ' / av ' : ' t ,  = vt: '  -Kj? J, (1o) 

where the subscripts 1 and 2 denote any two points within the two-phase 
region, including the points at the saturated single phases and the super- 
script (2) denotes the bulk property (that is, the property of the vapor and 
the liquid combined). 

Alter computing (SU~278V~2~)T at different temperatures in the tem- 
perature range of interest, we can fit these values to Eq.(8h [-with an 
appropriate model for p . (T) ]  to produce vapor pressures using nonlinear 
regression [ 12]. The regression analysis must fit the adjustable parameters 
in the difference between two equations: those for T(dp/dTL and p . .  In 
order to be successful, we must select a model for p . (T)  which is capable 
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of fitting vapor-pressure data within experimental uncertainty over the 
entire temperature range of interest. 

The best source of experimental values for U ~2~ is from isochoric (con- 
stant V ~21) measurements with an adiabatic calorimeter. At least two 
isochores are needed to calculate the change of the bulk internal energy 
with respect to the bulk specific volume at constant temperature. Since the 
calorimetric measurements provide the change of internal energy along a 
given isochore, but not the change of internal energy from one isochore to 
another, we need additional information at a reference temperature to 
determine the change of internal energy between two isochores. This 
reference temperature is selected near the normal boiling point, where 
accurate, direct measurements of vapor pressure are available. 

(OU~'-~/OV~'-~) r at the reference temperature can be calculated with 
Eq. (8) and vapor-pressure data around the reference temperature. Then 
the change of internal energy from isochore 1 to isochore 2 at that 
reference temperature can be determined as follows: 

U~ 2 1 -  UCl 2) = (OUI2I/OVI21)T ( VI~? ' -  VII 2~) ( 1 1 ) 

In this procedure, we set the internal energy of one of the isochores (Uk  2~ 
o1" UC~ 2~) to an arbitrary value at the reference temperature. 

2.2. Test of Technique with Equation-of-State Calculations 

We tested this procedure with (OU/OV)r  values generated with an 
equation of state for the temperature range of interest. We calculated inter- 
nal energies for R134a in the single-phase fluid at the saturated liquid and 
vapor densities with the Tillner-Roth [ 11 ] equation of state and compared 
the vapor-pressure values produced by the technique presented in this work 
with the Huber and McLinden [7]  vapor-pressure equation for R134a. At 
248 K, the vapor pressure produced with the (OU/OV)r  values is 13 Pa 
lower ( - 0 . 0 1 %  ) than the value fi'om the vapor-pressure equation. At 210.0 K, 
it is 14 Pa higher (+0 .1%) .  At the triple-point temperature (169.85 K), it is 
3 Pa higher ( + 0.8 % ). We have demonstrated that there is good consistency 
between the equation of state developed by Tillner-Roth and Baehr and the 
vapor-pressure equation independently determined by Huber and McLinden. 
More importantly, these results demonstrate the effectiveness of the working 
equations and methodology developed for this project. 

2.3. Application to Three Substances 

This method was applied to three alternative refrigerants: 1,1,1,2- 
tetrafluoroethane (R134a), pentafluoroethane (R125), and difluoromethane 
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(R32). These fluids were chosen because of the availability of calorimetric 
data. Magee and co-workers [ 10, 14] measured AU (-') and i/(2) along two- 
phase isochores with an adiabatic calorimeter. Initially, we used Magee's 
[ 10] calorimetric data from the isochores with the highest and lowest den- 
sities. The difference in internal energy between the two isochores is about 
15 J . m o l  ~ at the reference temperature and about 0.2 J . m o l  ~ at the 
triple-point temperature. With an uncertainty of 0.1 J . m o l  ~.K ~ for 
AU(2)/AT, it was not possible to determine (OUC2)/OV(2)) r with sufficient 
accuracy. Unfortunately, the published two-phase isochores are too close 
to the saturated liquid and too close among themselves. 

The normal boiling-point and triple-point temperatures lbr R134a are 
246.78 K [ 11 ] and 169.85 K [ 10], respectively. A temperature of 248 K was 
selected for the reference temperature due to the availability of tabulated 
saturation curve data. The internal-energy reference state, where we arbitrarily 
set U = 0, was selected as the saturated vapor at 248 K. We have evaluated 
vapor pressures for R134a from 248 K to the triple-point temperature. 

Experimental data on internal-energy changes at a low (0.01 < p/p~. < 
0.11 bulk density have not been published for R134a. As a substitute, we 
used internal energies of the saturated vapor from an equation of state for 
our tow-density states. We paired this with a high-density isochore fiom 
calorimetric measurements. The difference in internal energy between 
these two curves is about 20 k J - tool  ~ at the reference temperature and 
about 25.5 k J - mo l  ~ at the triple-point temperature. The large absolute 
values we obtained for AU ~2) allow us to calculate accurate values of 
(OU'2'/SV'~-')1.. 

In order to determine the magnitude of the real-gas contribution, we 
obtained the saturated-vapor internal energies in two ways. First, looking 
at only the ideal-gas contribution, we employed ideal-gas heat capacities 
[11] lbr the determination of internal energies. The ancillary equation 
reported by Tillner-Roth [ 11 ] was employed tbr saturated-vapor densities. 
With this approach, we obtained estimated vapor pressures which were 
slightly high. A comparison with the vapor-pressure equation reported by 
Huber and McLinden [7]  and the vapor-pressure equation reported by 
Tillner-Roth [ 11 ] shows a deviation of + 160 Pa ( + 0 . 2 % )  at the reference 
temperature and + 20 Pa( + 5 %I at the triple point. 

In the second case, we included the volumetric contribution to internal 
energies from d U =  C,. d T +  (8U/OV)rdV  by using the Tillner-Roth [ 11 ] 
equation of state for the gas-phase properties of R134a. This led to 
excellent results for the calculated vapor pressures. A comparison with the 
vapor-pressure equation reported by Huber and McLinden [7]  shows a 
deviation of - 3 2  Pa ( - 0 . 0 3 % )  at the reference temperature and - 3  Pa 
( - 0 . 8 % )  at the triple point. 
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Our primary focus is the development of a new equation of state for 
a fluid of interest. For this task, reliable vapor pressures are essential input 
data for the fitting procedure. These data should ideally cover a broad 
range of temperatures. In most cases, there are ample p ,  data near ambient 
conditions, but data are scarce at very low temperatures. In these cases, we 
use the ideal-gas calculation in the first iteration, then fit a preliminary 
version of an equation of state and use it to calculate the volumetric 
contribution. We iterate this process until the results converge. 

In order to test the sensitivity of this procedure to the form of the vapor- 
pressure equation, we used two functions lbr the vapor pressure p~(T) model 
in Eq. (8): the first is an equation of Huber and McLinden [7] ,  

Q T ) T3 lnt~ =CIr':+C2 ~ + C 3 r + C 4  (12) 

where r =  1 - T/Tc, ~= 1.66, Tc=374.179 K, and Pc.=4.056 MPa. 
The second equation is fi'om Tillner-Roth [11 ]: 

lnP~ = 1 p~ Tr [ C I r  + C 2 r  1'5 + C 3 r +  + C4 r 4 ]  (13) 

where Tr 374.18 K and pc=4.05629 MPa. 
We obtained nearly identical ( -I-2 Pa) vapor-pressure results when the 

calculated data are fitted to either Eq. (12) or Eq. (13). Thus, the technique 
is independent of the model used for p~,(T), as long as this model is capable 
of fitting experimental vapor pressures in the temperature range of interest. 
Table I presents the fitting parameters (C~, C2, C~, and C4) from 
experimental vapor pressures for both vapor-pressure equations. 

Table I. Parameters lo t  Vapor-I ' ressurc  Ancillary Equations 

('1 ( '" ( '" ('4 (-'5 

Eq. ( 12 ), R [ 34a" 
Eq. (13), RI34a ~' 
Eq. (17), RI25'  
Eq. ( 181, R32' 
Eq. (12), R134a 
Eq.{17L R[25 
Eq. (181, R32 

3.946984 - I 1.313271 3.693108 5.566337 - 
-7 .686556 2.311791 -2 .039554 3.583758 
-7.435645 1,341794 -3.367536 - 1.697153 
-7 .559554 2.465252 - 1.976887 -2.021284 - 1,941251 

4+023776 - 11.38239(/ 3,746555 5.675758 
- 7.517629 1.5311641) - 3,618286 - 1.80241)0 
-7.566935 2.484133 - 1.984020 -2.067412 - 1.921275 

" I-'ronl Rel~ 7. 
" F rom ReI~ 1 I. 
' Fronl Ref 13. 



182  D u a r t e - G a r z a  and M a g e e  

< 
> 

0 
e~ 

> 

L~ 

0 

c ~  

c~ 

,_~ 

..~ 

r 

o 

g, 

I . 

_~' ~ ... ~ ~. ~ .~ ~ ~o ~ ~ ~ ~ ~ ~ ~ ~ . ,  ~ ~ ~ .  _ . ,  

__~ ~ - ~ . ,  ~ ~ ~ - g ~ ~ ~ g ~ ~ g g ~ ~ . ,  __ __ __ 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , . ,  - -  

I I 1 I I I I I I I I I I I I I I I I I 

I I I I I I I I  I I I I I I I I I I I  

. . . .  , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~'~ 

_ , o o  - -  

~ ~ o o ~. ~ ~ o o o o o ~ o o o . . . 



Vapor Pressures of Refrigerants 183 

o 

I I I 1 I I I I I I l i I I I I I I I l I 

~ o  . . . . .  ~ , ~ ~ ~  . ~ ~  
~ ~ ~ ~ ~ ~ ~ ~ ~ ~i ~ ~ ,~ ~ ~ ~ ~ ~ ~ ~ ~ 

I I [ l l l l l l l l l l l l l l l l l l  

~ ~ ~, ~ ,~ ~ ,~ p~ g ~ ~ ~, ~ ~ ~ 

�9 " ' ~ i  ~ i  r~  ~-, ~ ,  ~ ug ~ r ~  ~ ~ r i  , r ;  ~ ~ ;  ~ ~ :  ~-~ 

> 

-g 

I 

7. > 

r ,  __  



184 Duarte-Garza and Magec 

In every test case presented tbr R134a, the change in internal energy 
along the high-density isochore was determined from Magee's [ 10] two- 
phase calorimetric data. We chose an isochore that includes measurements 
from 175.830 to 250.426 K. For this isochore, the calorimetric bomb (with 
a volume of approximately 73 cm ~) contained 0.9697 mol of sample. The 
energy needed to change the temperature of the sample by 1 K was fitted 
to the equation 

Q / A T = a , , + a , T  ~ + a , T  "- (14) 

where Q is in J and T is in K. The coefficients are a,,=2.10249278 x 10-', 
al = -3.17356599 x 104. and a,  = 2.70115464 x 10". 

The change of internal energy along the isochore is then calculated as 

I{i~( Q/AT) dT 
A U -  (15) 

II 

where n = 0.9697 tool. 
The density of the isochore was fitted to the equation (the exact bomb 

volume varies with temperature and pressure) 

p = b ~ , + b i T  I + b , T  2 (16) 

where p is in tool .din 3 and the coefficients are b~,= 1.30197341 x 10', 
b~ = 8.23883179 x 10 ~, and b , =  -5.97789093 x 103. The molecular weight 
used tbr R134a is 102.03 g . m o l  

The internal energy and density of the saturated vapor  were calculated 
with the Tillner-Roth [11]  equation of state for R134a. Any other gas- 
phase equation of state which reproduces the correct behavior of the 
second virial coefficients could have served the same purpose. A value of 
(8U~2~/O 1:~2~)r at the reference temperature (248 K) was calculated with the 
vapor-pressure ancillary equation of Huber  and McLinden [7].  To show 
the contribution of each term in Eq. (10), intermediate values of the specific 
volume, internal energy, and (8U'~-~/8V"-')r are presented in Table II. In 
addition, we have shown that the internal energies of vaporization Av:,~, U 
are only slightly higher ( <0.02 kJ �9 kg ~ ) than the two-phase d U values 
used to determine vapor  pressures. Thus, most of the internal energy 
change needed to span the two-phase region has been employed to evaluate 
vapor  pressures with this technique. The Av,xv U values were shown to be 
within 0.09 % of those given by Tillner-Roth and Baehr [ 11]. This result 
implies that our vapor  pressures will be thermodynamically consistent with 
the Tillner-Roth and Baehr equation of state. 
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For R125, we used the vapor pressure ancillary equation of Outcalt 
and McLinden [13]  as our model for p,(Tl in Eq.(8) 

In p---~ -- Ci r + C , r  15 + C3 v3 + C4r ~' (17) 
p~. I - r  

where r =  1 - T/Tc,, T~.= 339.33 K, and P c =3 . 629  MPa. The fitting 
parameters of Outcalt and McLinden [13]  obtained from experimental 
vapor-pressure data are shown in Table I. 

An isochore with a total of 0.86966 tool was chosen from the 
calorimetric data measured by Lfiddecke and Magee [ 14]. The change of 
internal energy along the two-phase isochore was calculated with Eqs. (14) 
and (15). The fitting parameters for Eq.(14) are a,,= 1.99691908 x 10 -~, 
a~ = -2.81467285 x 104 , and a ,  = 2.11451248 x 10% The density of the 
isochore was fitted to Eq.(16) within experimental uncertainty. The 
fitting parameters for this equation are b . =  1.16836327x 10 ~, 
b~ = 7.52740868 x l0 t, and b, = -5.51047455 x 103. For R125, 
M=120 .02  g . m o l  ~. The internal energy and density of the saturated 
vapor were calculated with the equation of state tbr R125 of Outcalt 
and McLinden [13].  (OU/OV)r at the reference temperature (225.15 K) 
was calculated with the vapor-pressure ancillary equation of Outcalt and 
McLinden [ 13]. 

For R32, we used the vapor-pressure ancillary equation of Outcalt and 
McLinden [13] as our model tbr p , (T )  in Eq.(8), 

In P " =  C1 r + C . r  15 + C3r-" + Car~' + Csr  ~'5 (18) 

PL. 1 - r 

where Tc = 351.35 K and pc .=  5.795 MPa. The fitting parameters of Out- 
calt and McLinden [13] obtained from experimental vapor  pressure data 
are shown in Table I. 

An isochore with a total of 1.28723 tool was chosen from the 
calorimetric data measured by Lfiddecke and Magee [ 14]. The change in 
internal energy along the two-phase isochore was calculated with Eqs. (14) 
and (15). The fitting parameters for Eq.(14) are %,=1.48365613 x102 , 
a ~ = - l . 5 1 2 4 9 0 5 6 x 1 0 4 ,  and a~= l .30273164x10  ~'. The density of the 
isochore was fitted to Eq. (16) within experimental uncertainty. The fitting 
parameters for this equation are b, = 1.73805482 x 10 ~, b~ = 7.8201792 x 10 t, 
and b~= -4.86941367 x 103 . For R32, M=52.024 g . m o l  ~. The internal 
energy and density of the saturated vapor were calculated with the Outcalt 
and McLinden [13] equation of state for R32. (OU/OV)r at the reference 
temperature (221.15 K) was calculated with the vapor pressure ancillary 
equation of Outcalt and McLinden [ 13]. 
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3. RESULTS 

3.1. Vapor Pressures for R134a, R125, and R32 

We have devised a technique to evaluate accurate vapor pressures 
from calorimetric data. We calculated vapor pressures from the triple-point 
temperature to around the normal boiling-point temperature for the 
following fluids: R134a, R125, and R32. Tables lII, IV, and V present 
vapor pressures for R134a, R125, and R32, respectively. The bottom of 
Table I presents the fitting parameters (obtained with the present techni- 
que) for the vapor pressure equations. Deviations of these vapor pressures 
from the respective vapor-pressure ancillary equations are shown in Figs. 2, 
3, and 4. The figures also show how some accurate vapor pressure data 
deviate from the vapor pressure equations. 

Figure 2 (R134a) shows excellent agreement between the vapor 
pressures determined by this technique and vapor pressures measured by 
Magee and Howley [15]. It also shows agreement within experimental 
uncertainty of 20-40 Pa (0.02-0.04%) for vapor pressures by Goodwin 
etal. [16]. 

For R125, Fig. 3 shows that the vapor pressures determined in this 
work are systematically lower than the vapor pressure from the ancillary 
equation. This is not necessarily a bad result, because they fall precisely 
between two published data sets. The vapor pressures are just below 
( - 3 0  Pa, -0 .03%) the vapor pressures by Magee [17] around the nor- 
mal boiling point and are just above (+30Pa ,  +0.03%) the data of 
Weber and Silva [ 18], also around the normal boiling-point temperature. 
At the triple-point temperature there is good agreement ( _.30 Pa, + 1%) 
with the values calculated from C, measurements reported by Liiddecke 
and Magee [ 14] and also the values Weber and Silva calculated using the 
same C. data. 

Figure 4 shows vapor-pressure deviations for R32. Our calculated 
vapor pressures agree (within experimental uncertainty, _+ 40 Pa, _+ 0.04 % ) 
with the vapor pressures measured by Weber and Goodwin [ 19] around 
the normal boiling-point temperature. At the triple-point temperature. 
there is good agreement ( <5 Pa) between our values and values calculated 
t~om C. measurements [ 14]. 

3.2. Estimation of Uncertainties 

This section presents the sources of uncertainty for the calculated 
vapor pressures. This includes the effect of the model used lbr p,(T), the 
effect of the vapor-pressure data used to calculate (OU/OV) r at the reference 
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T a b l e  ! ! ! .  V a p o r  P r e s su re s  D e r i v e d  f r o m  U '2 '  a n d  f r o m  Pub l i shed  D a t a  for R134a  

T Po P a published On - -  ]}n, l',uhlishcd 
{ K } { Pa  } { Pa )" ( Pa  ) 

169.85 390.2 393.4 - 3.1 

170.00 396.8 400.11 - 3.2 

175.00 681.2 685.8 - 4 . 6  

180.00 1,128.4 1,134.8 - 6.4 

185.(111 1,809.6 1.818.3 - 8.6 

190.0(/ " ,817.5  2,828.7 - 11.2 

195.00 4 ,269.6  4 ,283.6  - 14.0 

21111.011 6 3 1 1 . 4  6,328.5 - 17. I 
205.00 9, I 19.6 9,139.7 - 20, I 

210.00 12,903.9 12,926.9 - 23.0 

2 i 5.00 17,9(19.7 17 ,9353  - 25.6 

2211.00 24,418.8 24,446.6 - 27.8 

225.1111 32,750.6  32,780.  I - 29.4 

230.00 43,262.6  43 ,293.2  - 30.6 

235.(}0 56,349.6  56,380.9 - 31.2 

24{1.{10 72.443.7 72,475.4 - 31.7 

245.1111 92,0 [ 3.0 92.(145.3 - 32.3 

250.011 115,560.3 115.593.7 - 3 3 . 5  

" F r o m  Rel2 7. 

T a b l e  IV.  V a p o r  Press t t rcs  D e r i v e d  fronl  {,,z~ a n d  f r o m  1}ublishcd D a t a  lbr  R125 

T / ~  P ~. l,~,Ni~hca P~ -- P~. p~,hli~hed 
{ K } ( Pa  } ( Pa 1" { Pa  } 

172.52 2,915.6 2,953.1 - 37.4 

175.00 3,653.7 3,695.8 - 42.0 

180.00 5,630.7 5,682.1 - 51.4 

185.00 8,439.2 8,499.5 - 60.4 

190.00 12,331.8 12,399.9 - 68.1 

195.1111 17.607. I 17.68(I.9 -- 73.8 

200.0(I 24,611.4  24,688.3 - 76.9 

2115.011 33,739.4 33.816.5 - 77.1 

210.00 45.434.  I 45,508.8  - 74.7 

215.00 60,185.2 611,255.9 - 711.7 

220.00 78,528.11 78,594.9 - 67.0 

225.00 I (11,040,6 10 I,  106.8 - 66.2 

" F r o m  Re(. 13. 
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Table  V. Vapor  Pressures  Derived from ( . 2  and  from l)uMislled Data  for R32 

f P+ P+. puhhshed P+ -- P +  t,.bli~h~.d 

( K ) ( Pa  ) ( Pa 1" I Pa ) 

136.34 46.5 46.9 0.5 

140.00 81.4 82. I 0.7 

145.{)0 166.1 167.4 - 1.3 

150.0o 320.6 322.7 - 2. I 

155.00 589.1 592.4 3.4 

160.00 [,035.3 1.040.4 - 5. t 

165.00 1.748.5 1.755.8 - 7.3 
170.00 2,848.6 2,858.7 - I O. I 
175.00 4,492.0 4,5115.5 13.4 

180.00 6,877.6 6.894.9 - 17.3 

185.(10 111.251.1 10,272.6 - 21.5 

191/.011 14,910.3 14.936.3 - 26.11 

195.00 21,208.4 21,238.9 - 30.5 

2110.1)11 29.556.9 29.591.6 34.8 
2()5.00 41).4277 40.466.3 38.6 

210.011 54.354.2 54.396. I - 41.9 

215.011 717}31.5 71.975.9 - 44.4 
22(1.(1() 93.815.5 93,861.6 46. I 

" F'rom l+,cll 13. 

100 

0 80 R134o  . "  

[D_ 60 - ' "  / 

_o 20 r _ . _ ~ -  

-c o - - - - - ~ " ~ ' ~ ' ~ 2  - A 

5 - - - ~ - s  o--~ �9 ~ ~ ~ 
- - ~ - + = d - d -  o o o 8 " ~ - o  o o �9 o -20 AZ~ 

EL 
I - 4 0  ~ T h i s  Work ~ ,  A 

- 6 0  . . . . .  Ooodwin et ol. [16] 
- 8 0  ~ M o g e e  o n d  H o w l e y  [15] "\ 

- 1 0 0  t t i L 

1 60 180 200  220  240  2 6 0  

T e m p e r @ t u r e ,  K 

Fig. 2. C o m p a r i s o n  of vapo r  pressures for RI34a  ca lcula ted  with the prcsem, nlc thod and 

selected exper in lenta l  values  with the anci l lary  vapor-pressure  equa t ion  of l luber  and  

McLinden  [ 7 ]: dashed  lines are _+ 0.1 ",, devia t ions .  
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Fig. 3. Comparison of vapor pressures Ibr R I25 calculated with the present method and 
selected experimental values with the ancillary vapor-pressure equation c,l Outcalt and 
lVlckinclen [ 13]: dashed lines are _+0.1 "i, deviations. 

temperature, the effect of an uncertainty in the saturated vapor specific 
volume ( I/" L the isochoric heat capacity of the ideal gas (CIJ)), the specific 
volume of the high-density isochore (V~-"), and the change of internal 
energy along the high-density isochore (A U'~-'/AT). The uncertainties we 
quote correspond to a coverage factor of 2 and were calculated using the 
properties of R134a. Tables II and III and published tables in Refs. 7 and 
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\ 

I I I I I 
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Temperoture, K 

Fig. 4. Comparison of vapor pressures Ibr R32 calculated with the present method and 
selected exl~erimental values with the ancillary vapor-pressure equation of Outcalt and 
Mckinden [ 13 ]: dashed lines are _+ 0. 1% deviations. 
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11 may serve as guides to the intermediate values used in the calculations. 
We present comparisons of the vapor pressures at the triple-point tem- 
perature, a middle temperature (210 K), and a temperature near the nor- 
mal boiling-point temperature (245 K). The vapor pressures are 390, 
12,904, and 92,013 Pa at these temperatures. An estimate of the overall 
uncertainty in the evaluated vapor pressures is presented. 

We evaluated the vapor pressure of R134a by fitting to two equations 
representing p~(T) in Eq. (8). We used both Eq. (12) and Eq. (13) in this 
technique. Practically the same values are obtained from both equations. 
Differences between the vapor pressures are 4.2 Pa (0.004%) at 245 K, 
2.4 Pa at 210 K, and 2.5 Pa at the triple point. This implies that the results 
of this technique are only weakly dependent on the model used to deter- 
mine p,(T), as long as the model is capable of representing data over a 
wide range of temperature. 

In this technique, we need to evaluate (OU/OV)-r from vapor-pressure 
data at a reference temperature. Two vapor-pressure equations from Huber 
and McLinden [7]  and Tillner-Roth and Baehr [ 11 ] were employed. The 
difference between the calculated vapor pressures is 25.1 Pa (0.025%) at 
245 K, 3.4 Pa at 210 K, and 0.1 Pa at the triple-point temperature. We get 
close to the same results whether we choose one or the other ancillary 
equation for the reference calculation. It is also apparent that the effect of 
an error in the (OU/OV) r value assigned to the reference temperature 
diminishes as the temperature decreases. 

We applied a systematic offset of _+ 0.5 % to the specific volumes of the 
saturated vapor to test the sensitivity of this method to this quantity. 
Uncertainty in the density translates directly into uncertainty in the 
calculation of U". This offset represents the largest estimated uncertainty 
for these specific volumes. This offset causes a difference in the evaluated 
vapor pressures of _+30.0 Pa (0.03%) at 245.0 K, +8.5 Pa at the middle 
temperature, and _+ 0.2 Pa at the triple-point temperature. These differences 
will be incorporated into the propagation of uncertainties. 

For  this fluid, the uncertainty in the isochoric heat capacity of the 
ideal gas (CI. ~) is estimated to be +0.5%.  This amounts to an uncertainty 
in U" of about 0.3 J .  mol '. Since the ideal-gas contribution is the prin- 
cipal part of U"(T) at low pressures, this is the principal source of uncer- 
tainty for the evaluation of the internal energy of the saturated vapor. This 
offset causes a difference in the evaluated vapor pressures of -+27.0 Pa 
(0.03%) at 245 K, -+7.0 Pa at 210 K, and +0.2 Pa at the triple-point tem- 
perature. 

Because the specific volume of the high-density isochore is negligible 
compared to the specific volume of the saturated vapor even large uncer- 
tainties in this quantity do not significantly affect the evaluated vapor 
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pressures. The specific volumes of the high-density isochore are estimated 
to have uncertainties less than +0.2%. This quantity does not have a 
significant effect in the evaluation of vapor pressures. 

For this fluid, the uncertainty of (zIUte~/zJT) is estimated to be 
0.1 J . m o l  t. K t (0.1%). An uncertainty of _+0.1% in (AUtO-'/AT) causes 
a difference in the evaluated vapor pressures of +9.0 Pa (0.009%) at 
245 K, +3.0 Pa at 210 K, and 4-0.1 Pa at the triple-point temperature. 

Using the square root of the sum of squares method, we estimated the 
combined uncertainty of our vapor pressure values as _+48.0 Pa ( +0.05 %) 
at 245 K, + 12.0 Pa ( + 0.09 % ) at 210 K, and + 2.5 Pa ( + 0.6 % ) at the tri- 
ple-point temperature. 

3.3. Vapor-Pressure Extrapolation or Evaluation 

In addition to fitting (OU/OV)-rVS Tfor  R134a, we added experimental 
vapor pressures at temperatures close to the reference temperature (248 K) 
and fitted them simultaneously to the same p+(T) equation. We had 39 
(~U/~V) r points and 31 vapor-pressure points. The (OU/OV)r data range 
from the reference temperature to the triple-point temperature, while the 
vapor-pressure data range from 245 to 260 K. The effect of including the 
experimental vapor pressure data is negligible. The evaluated vapor 
pressure was only 4 Pa (0.004%) higher at 245 K, was only 2 Pa higher at 
210 K, and remained the same at the triple-point temperature. This 
emphasizes the fact that this" technique is not an extrapolation of  existing 
t'apor pressltres but it is" an et'aluation of  the vapor pressure fi'om calorhnetric 

data. 

4. CONCLUSIONS 

A novel method was presented for evaluation of vapor pressures from 
measured internal-energy changes and reference values of the vapor 
pressure and its derivative with temperature evaluated near the normal 
boiling-point temperature. In this application, internal-energy changes of 
the saturated vapor calculated from an equation of state or from the ideal- 
gas heat capacity were substituted for experimental measurements of A U at 
low densities without incurring higher uncertainties. Alternatively, this 
technique can employ calorimetric data to verify the thermodynamic con- 
sistency of vapor-pressure data and correlations of such data. Agreement of 
our calculated vapor pressures for R134a with accurate (___0.02-kPa) 
measurements by Goodwin et al. [ 16] was within +0.04 kPa (+0 .04%) ,  
near the normal boiling point) at temperatures between 214 and 248 K. 
Consistency with the equation of state of Tillner-Roth and Baehr was 

,~41) IN 1-13 
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demonstrated by the agreement of internal energies of vaporization with 
the calculated values within 0.2 k J. kg ~ (0.09 %). A propagation-of-uncer- 
tainties analysis was used to estimate the uncertainty of the vapor pressures 
determined with this method. When applied to R134a, we estimated the 
uncertainty (coverage factor of 2) of the vapor pressure to be 0.05% at 
245 K, 0.09% at 210 K, and 0.6% at 169.85 K. These uncertainties are of 
the same order of magnitude as those from carefully designed experiments 
for direct measurements of vapor pressures. 
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NOMENCLATURE 

Ca 
Cl." 
M 

P.  
Q/3  T 

P 
T 
75 

Saturated liquid heat capacity 
Isochoric heat capacity of the ideal gas 
Molecular weight 
Vapor pressure 
Amount of energy needed to change the temperature of the sam- 
ple by 1 K 
Density 
Temperature 
1 - T / T c  

Superscript Notation 

' Saturated liquid 
" Saturated vapor 
(2) - { m i X ' + n l ~ X " } / { ~ 1 1 ~ + m ~ } ,  bulk property X ~2~ in the two- 

phase region for a specific property X, where nil and nl~ are, 
respectively, the masses of the liquid and gas 
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Subscript Notation 

AVAP 
it 

T 
C 
o 

Change due to vaporization 
Constant volume (isochoric) 
Constant temperature (isothermal) 
Critical property 
Saturation property 
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